Deriving quantitative conclusions from microarray expression data

نویسندگان

  • Adam B. Olshen
  • Ajay N. Jain
چکیده

MOTIVATION The last few years have seen the development of DNA microarray technology that allows simultaneous measurement of the expression levels of thousands of genes. While many methods have been developed to analyze such data, most have been visualization-based. Methods that yield quantitative conclusions have been diverse and complex. RESULTS We present two straightforward methods for identifying specific genes whose expression is linked with a phenotype or outcome variable as well as for systematically predicting sample class membership: (1) a conservative, permutation-based approach to identifying differentially expressed genes; (2) an augmentation of K-nearest-neighbor pattern classification. Our analyses replicate the quantitative conclusions of Golub et al. (1999; Science, 286, 531-537) on leukemia data, with better classification results, using far simpler methods. With the breast tumor data of Perou et al. (2000; Nature, 406, 747-752), the methods lend rigorous quantitative support to the conclusions of the original paper. In the case of the lymphoma data in Alizadeh et al. (2000; Nature, 403, 503-511), our analyses only partially support the conclusions of the original authors. AVAILABILITY The software and supplementary information are available freely to researchers at academic and non-profit institutions at http://cc.ucsf.edu/jain/public

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of antibody-based microarray assay for quantitative detection of aflatoxin B1

BACKGROUND: Aflatoxin B1 (AFB1) is a toxic metaboliteproduced by Aspergillus species that contaminates a wide range ofagricultural products. OBJECTIVES: This study was designed todevelop a rapid and highly sensitive immunoassay method inmicroarray format for quantitative detection of AFB1 to evaluatethe potential of microarray platform for high-throughput screening,which can be beneficial in fo...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2002